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In this paper, we investigate the emergence of a ratio-dependent predator-prey system with Michaelis-
Menten–type functional response and reaction diffusion. We obtain the conditions of Hopf, Turing, and wave
bifurcation in a spatial domain. Furthermore, we present a theoretical analysis of evolutionary processes that
involves organisms distribution and their interaction of spatially distributed population with local diffusion.
The results of numerical simulations reveal that the typical dynamics of population density variation is the
formation of isolated groups, i.e., stripelike or spotted or coexistence of both. Our study shows that the
spatially extended model has not only more complex dynamic patterns in the space, but also chaos and spiral
waves. It may help us better understand the dynamics of an aquatic community in a real marine environment.
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I. INTRODUCTION

Ecological systems are characterized by the interaction
between species and their natural environment �1�. Such in-
teraction may occur over a wide range of spatial and tempo-
ral scales �2,3�. The study of complex population dynamics
is nearly as old as population ecology. In the 1920s, Lotka
and Volterra independently developed a simple model of in-
teracting species that still bears their joint names. This was a
simple model, but the predator-prey version displayed neu-
trally stable cycles �4,5�. From then on, the dynamic relation-
ship between predators and their prey has long been and will
continue to be one of dominant themes in both ecology and
mathematical ecology due to its universal existence and im-
portance �6–8�.

Predator-prey models follow two general principles: one
is that population dynamics can be decomposed into birth
and death processes; the other is the conservation of mass
principle, stating that predators can grow only as a function
of what they have eaten �9�. With these two principles we
can write the canonical form of a predator-prey system as

Ṅ�t� = Ng�N� − f�N,P�P − �N�N�N ,

Ṗ�t� = �f�N,P�P − �P�P�P , �1�

where t denotes time and N�t� , P�t� stand for prey and preda-
tor density, respectively, g�N� is the per capita prey growth
rate in the absence of predators, �N and �P are natural mor-
talities of prey and predator, respectively, and f�N , P� is the
functional response. And �f�N , P� is the per capita produc-
tion of predators due to predation, which is often called the
numerical response. Usually one considers consumption to
be the major death cause for the prey. In this case �N�N� can
be neglected and set to 0 �as long as the predator exists� �9�.

In population dynamics, a functional response f�N , P� of
the predator to the prey density refers to the change in the
density of prey attached per unit time per predator as the
prey density changes �10�. In general, functional response
can be classified as �i� prey dependent, when prey density
alone determines the response, i.e., f�N , P�= p�N�; �ii� preda-
tor dependent, when both predator and prey populations af-
fect the response. Particularly, when f�N , P�= p� N

P
�, we call

model �1� strictly ratio dependent; and �iii� multispecies de-
pendent, when species other than the focal predator and its
prey species influence the functional response �11�. Differing
from the prey-dependent predator-prey models, the ratio-
dependent predator-prey systems have two principal predic-
tions: �a� equilibrium abundance is positively correlated
along a gradient of enrichment and �b� the “paradox of en-
richment” either completely disappears or enrichment is
linked to stability in a more complex way �12,13�. The ratio-
dependent predator-prey model has been studied by several
researchers recently and very rich dynamics have been ob-
served �7,8,12,14,15�.

On the other hand, we live in a spatial world, and spatial
patterns are ubiquitous in nature, these patterns modify the
temporal dynamics and stability properties of population
densities at a range of spatial scales, their effects must be
incorporated in temporal ecological models that do not rep-
resent space explicitly. And the spatial component of eco-
logical interactions has been identified as an important factor
in how ecological communities are shaped �1,2,8,16,17�.
And pattern formation in nonlinear complex systems is one
of the central problems of the natural, social, and technologi-
cal sciences �16�. In particular, starting with the pioneering
work of Segel and Jackson �18�, spatial patterns and aggre-
gated population distributions are common in nature and in a
variety of spatiotemporal models with local ecological inter-
actions �1,19�. Promulgated by the theoretical paper of Tur-
ing �20�, the field of research on pattern formation modeled
by reaction-diffusion systems, which provides a general the-
oretical framework for describing pattern formation in sys-
tems from many diverse disciplines including �but not lim-
ited to� biology �16,21–26�, chemistry �27–32�, physics
�33–36�, and so on, seems to be an increasingly interesting
area, particularly during the last decade.
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In Ref. �2�, Neuhauser surveyed some current work on
spatial mathematical models in ecology. Much of this work
consists of building spatial dimensions into existing classical
models, such as the Lotka-Volterra model that describes
competition between species. However, research on the spa-
tial pattern of ratio-dependent predator-prey models seems to
be rare.

II. STABILITY AND BIFURCATION ANALYSIS

In this paper, we mainly focus on the ratio-dependent
predator-prey system with Michaelis-Menten-type �or
Michaelis-Menten-Holling� functional response:

�N

�t
= r�1 −

N

K
�N −

�N

P + �hN
P + D1�

2N ,

�P

�t
= �

�N

P + �hN
P − �P + D2�

2P ,

∀�N,P� � �0,��2 \ �0,0� , �2�

where N , P stand for prey and predator density, respectively.
D1 ,D2 are their respective diffusion coefficients, �2= �

�x2

+ �

�y2 is the usual Laplacian operator in two-dimensional
space. All parameters are positive constants, r stands for
maximal growth rate of the prey, � conversion efficiency, �
predator death rate, K carrying capacity, � capture rate, and h
handling time.

In the case of P=0 and N�0 we can define f�N ,0�ª 1
h

�the limit of f�x� for x→��.
Let

N̂ =
�hN

�K
, P̂ =

�hN

�2K
, R =

rh

�
,

Q =
h�

�
, S =

�h

�
, t̂ =

�t

h
. �3�

For simplicity we will not write the hat �ˆ� in the rest of this
paper. And in these new variables, from Eqs. �2� and �3�, we
arrive at the following equations containing dimensionless
quantities:

�N

�t
= R�1 −

N

S
�N −

SN

P + SN
P + D1�

2N ,

�P

�t
=

SN

P + SN
P − QP + D2�

2P . �4�

More details about the choice of dimensionless variables in
the system �2� as well as possible implications can be found
in �14�.

The dimensionless model �Eq. �4�� has five parameters: R,
which controls the growth rate of prey; Q, which controls the
death rate of the predator; S, which measures capturing rate;
and Di�i=1,2�, which defines the diffusion rates, respec-
tively.

The first step in analyzing the model is to determine the
behavior of the nonspatial model obtained by setting space
derivatives equal to zero. The nonspatial model has at most
three equilibria �stationary states�, which correspond to spa-
tially homogeneous equilibria of the full model �Eq. �4��, in
the positive quadrant: �0, 0� �total extinct�, �S ,0� �extinct of
the predator�, and a nontrivial stationary state �n* , p*� �coex-
istence of prey and predator�, where

n* =
S�R + �Q − 1�S�

R
,

p* =
S�1 − Q�

Q
n* =

S2�R − S + QS��1 − Q�
RQ

, �5�

n* is positive for all S�
R

1−Q , which implies Q�1 and there-
fore ensures the positivity of p* �14�.

To perform a linear stability analysis, we linearize the
dynamic system �4� around the spatially homogenous fixed
point �5� for small space- and time-dependent fluctuations
and expand them in Fourier space

N�x�,t� � n*e�teik�·x� ,

P�x�,t� � p*e�teik�·x� , �6�

and obtain the characteristic equation

�A − k2D − �I� = 0, �7�

where

D = �D1 0

0 D2
� , �8�

and A is given by

A = ��Nf �Pf

�Ng �Pg
�

�n*,p*�
= � fN fP

gN gP
� , �9�

where the elements are the partial derivatives of the reaction
kinetics evaluated at the stationary state �n* , p*�. Now Eq. �7�
can be solved, yielding the so-called characteristic polyno-
mial of the original problem �Eq. �4��

�2 − trk � + 	k = 0, �10�

where

trk = fN + gP − k2�D1 + D2� = tr0 − k2�D1 + D2� , �11�

	k = fNgP − fPgN − k2�fND2 + gPD1� + k4D1D2

= 	0 − k2�fND2 + gPD1� + k4D1D2. �12�

The roots of Eq. �10� yield the dispersion relation

�1,2�k� =
1

2
�trk ± 	trk

2 − 4	k� . �13�

The reaction-diffusion systems have led to the character-
ization of three basic types of symmetry-breaking bifurca-
tions responsible for the emergence of spatiotemporal pat-
terns. The space-independent Hopf bifurcation breaks the

WANG, LIU, AND JIN PHYSICAL REVIEW E 75, 051913 �2007�

051913-2



temporal symmetry of a system and gives rise to oscillations
that are uniform in space and periodic in time. The �station-
ary� Turing bifurcation breaks spatial symmetry, leading to
the formation of patterns that are stationary in time and os-
cillatory in space. The wave �oscillatory Turing or finite-
wavelength Hopf� bifurcation breaks both spatial and tempo-
ral symmetry, generating patterns that are oscillatory in space
and time �29�.

The Hopf bifurcation occurs when

Im„��k�… � 0, Re„��k�… = 0 at k = 0. �14�

Then we can obtain the critical value of Hopf bifurcation
parameter S equals

SH =
R + Q − Q2

1 − Q2 . �15�

At the Hopf bifurcation threshold, the temporal symmetry of
the system is broken and gives rise to uniform oscillations in
space and periodic oscillations in time with the frequency


H = Im„��k�… = 		0 = 	Q�Q − 1��R − S + QS� ,

and the corresponding wavelength is

�H =
2�


H
=

2�

	Q�Q − 1��R − S + QS�
. �16�

The Turing bifurcation occurs when

Im„��k�… = 0, Re„��k�… = 0 at k = kT � 0. �17�

The critical value of bifurcation parameter S equals

ST =
D1D2kT

4 + �D2R + D1Q�1 − Q��kT
2 + RQ�1 − Q�

Q3 − �kT
2D2 + 2�Q2 + Q + kT

2D2

,

�18�

where

kT
2 =	 	0

D1D2
,

and at the Turing threshold, the spatial symmetry of the sys-
tem is broken and the patterns are stationary in time and
oscillatory in space with the wavelength

�T =
2�

kT
. �19�

The wave bifurcation occurs when

Im„��k�… � 0, Re„��k�… = 0 at k = kw � 0. �20�

The critical value of wave bifurcation parameter S equals

SW =
kw

2 �D1 + D2� + R + Q − Q2

1 − Q2 , �21�

where

kw
2 =

Q

2D2
2�Q + 1�

��D1 − D2�2Q4 − 2�D1
2 + D2

2�Q3 + �D1
2 + D2

2

+ 6D1D2 − 4D2
2R�Q2 − 4D1D2Q + 4D2

2R�1/2.

At the wave threshold, both spatial and temporal symmetries
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FIG. 1. �Color online� Bifurcation diagram for the system �2�
with R=0.5, Q=0.6, D2=0.2. Hopf bifurcation line: SH= 37

32; Turing
bifurcation line: ST=− 15

32D1+ 375
64

	− 12
125D1
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32 with kT
2

=1.29615; wave bifurcation line: SW= � 25
16D1+ 5

16
�kW

2 + 37
32 with kW

=0.334. Turing-Hopf bifurcation point: �0.09248, 1.15625�. Turing-
wave bifurcation point: �0.15101, 1.21707�. The numbers
1,2,3,4,5,6, and the points in line S=1.2 are the different selections
of D1, which correspond to the curves marked 1,2,3,4,5,6 in Fig. 2.
And the numbers 10,9,8,7,6, and the points in line D1=0.02 are the
different selections of S, corresponding to Figs. 3–7.
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FIG. 2. �Color online� Dispersion relations showing unstable
Hopf mode, transition of Turing and wave modes from stable to
unstable for the system �2�, e.g., as D1 decreased. Parameters:
S=1.2, R=0.5, Q=0.6, D2=0.2, and �1� D1=0.18; �2� D1=0.16;
�3� D1=0.12; �4� D1=0.07; �5� D1=0.035; �6� D1=0.02.
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are broken and the patterns are oscillatory in space and time
with the wavelength

�W =
2�

kw
. �22�

Linear stability analysis yields the bifurcation diagram
with R=0.5, Q=0.6, D2=0.2 shown in Fig. 1.

The Hopf bifurcation line, the wave bifurcation line, and
the Turing bifurcation line intersect at two codimension-2
bifurcation points, the Turing-Hopf bifurcation point, and the
Turing-wave bifurcation point. The bifurcation lines separate
the parametric space into six distinct domains. In domain I,
located below all three bifurcation lines, the steady state is
the only stable solution of the system. Domain II is the re-
gion of pure Turing instabilities, and domain III is pure Hopf
instabilities. In domain IV, both Hopf and Turing instabilities

FIG. 3. �Color online� Snapshots of contour pictures of the time
evolution of the prey at different instants with S=0.6�ST. �A� 0
iteration; �B� 5000 iterations; �C� 45000 iterations �49�.

FIG. 4. �Color online� Snapshots of contour pictures of the time
evolution of the prey at different instants with S=0.9�ST. �A� 0
iteration; �B� 5000 iterations; �C� 45 000 iterations �49�.
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occur, and in domain V, the wave and Hopf modes arise.
When the parameters correspond to domain VI, which is
located above all three bifurcation lines, all three instabilities
occur. Figure 2 shows the dispersion relations of unstable
Hopf mode, transition of Turing and wave modes from stable
to unstable for the system �2�. All three bifurcations are su-
percritical.

III. SPATIOTEMPORAL PATTERN ANALYSIS

In general, the predator-prey system with reaction diffu-
sion, e.g., Eq. �4�, describes the time evolution of the spatial
distribution of species density. The nonuniform stationary
states of the model, Eq. �4�, that corresponds to spatial pat-
terns cannot be found analytically. The analytical methods
are not sufficient to fully understand the system, which is a
reason for using computer simulations. That is to say, itera-
tive computer simulations are required. If the model param-
eters are chosen appropriately the computer simulations will
give rise to strikingly rich and surprising beautiful �such as

stripelike, spotted, spiral, and spatial chaos� two-dimensional
patterns.

To solve differential equations, e.g., Eq. �4�, by comput-
ers, one has to discretize the space and time of the problem,
i.e., to transform it from an infinite-dimensional �continuous�
to a finite-dimensional �discrete� form. In practice, the con-
tinuous problem defined by the reaction-diffusion system in
two dimensions is solved in a discrete domain with m�n
lattice sites. The spacing between the lattice points is defined

FIG. 5. �Color online� Snapshots of contour pictures of the time
evolution of the prey at different instants with ST�S=1.1�SH

�45 000 iterations� �49�.

FIG. 6. �Color online� Coexistence of stationary spotted patterns
and stripelike patterns of the prey for long time run with SH�S
=1.16�SW �49�.

FIG. 7. �Color online� Snapshots of contour pictures of the time
evolution of the prey at different instants with S=1.2�SW. �A� 0
iteration; �B� 5000 iterations; �C� 45 000 iterations �49�.
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by the lattice constant 	h. In the discrete system the Laplac-
ian describing diffusion is calculated using finite differences,
i.e., the derivatives are approximated by differences over 	h.
For 	h→0 the differences approach the derivatives. The
time evolution is also discrete, i.e., the time goes in steps of
	t. The time evolution can be solved by using the so-called
Euler method, which means approximating the value of the
concentration at the next time step based on the change rate
of the concentration at the previous time step �37�.

In this section, we have performed extensive numerical
simulations of the spatially extended model �4� in two-
dimensional space, and the qualitative results are also shown.
All our numerical simulations employ the periodic Neumann
�zero-flux� boundary conditions with a system size of 200
�200 space units and R=0.5, Q=0.6, D1=0.02, D2=0.2.
The spatiotemporal dynamics of a diffusion-reaction system
depends on the choice of initial conditions, which some au-
thors have considered in connection with the problem of bio-
logical invasion in a few papers �16,38–40�, where the initial
conditions are naturally described by some specific functions
and the dynamics of the community mainly consists of a
variety of diffusive populational fronts. In general, there are

two initial conditions used for analysis of the spatial ex-
tended systems. One is random spatial distribution of the
species, which seems to be more general from the biological
point of view �cf. Figs. 3�a�, 4�a�, and 7�a��. The other is a
special choice, i.e., taking the species community in a hori-
zontal layer as decreasing gradually and the vertical distribu-
tion of species homogeneity �cf. Fig. 9�a��. In this section we
choose the former, and the latter in Sec. IV. The equations �4�
are solved numerically in two-dimensional space using a fi-
nite difference approximation for the spatial derivatives and
an explicit Euler method for the time integration with a time
stepsize of 	t=0.01 and space stepsize 	h=0.25.

From the analysis of Sec. II and phase-transition bifurca-
tion diagram �cf. Fig. 1�, the results of computer simulations
show that the type of the system dynamics is determined by
the values of S and D1. We run the simulations until they
reach a stationary state or until they show a behavior that
does not seem to change its characteristics anymore. For dif-
ferent sets of parameters, the features of the spatial patterns
become essentially different if S exceeds the critical value
SH, ST, and SW, respectively, which depend on D1.
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FIG. 8. �Color online� Patterns �left-hand column�, spatial Fourier transformation �middle column�, and radial average of the power
spectrum �right-hand column�. Top row S=0.9; Middle-row S=1.1; Bottom row S=1.2.
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Figure 3 shows the evolution of the spatial pattern of prey
at 0, 5000, and 45000 iterations, with small random pertur-
bation of the stationary solution n* and p* of the spatially
homogeneous systems when S is less than the Turing bifur-
cation threshold ST. In this case, one can see that for the
system �4�, the random initial distribution leads to the forma-
tion of a strongly irregular transient pattern in the domain.
After the irregular pattern forms �cf. Fig. 3�b��, it grows

slightly and “jumps” alternately for a certain time, and fi-
nally the chaos spiral patterns prevail over the whole do-
main, and the dynamics of the system does not undergo any
further changes �cf. Fig. 3�c� and Ref. �49��.

Figures 4 and 5 show spontaneous formation of short
stripelike and spotted spatial patterns emerge and coexist sta-
bly when the bifurcation parameter S�ST �Fig. 4� and ST
�S�SH �Fig. 5�. From the snapshots or movies, one can see
that the stripelike spatial patterns arise from the random ini-
tial conditions. After the stripelike patterns form �cf. Fig.
4�b�� they grow steadily with time until they reach certain
width armlength, and the spatial patterns become distinct.
Finally, the stripelike spatial patterns prevail the whole do-
main �cf. Fig. 4�c� and Fig. 5�. Comparing Figs. 4�c� with
Fig. 5, we find that the parameter S is closer to ST, and the
stripelike spatial patterns are more distinct. Here we omit the
preimage of Fig. 5 as they are similar to the Figs. 4�a� and
4�b�. The stationary patterns are essentially different from the
previous case �cf. Fig. 3�.

When SH�S=1.16�SW, we find that the spotted patterns
and the stripelike patterns coexist in the spatially extended
model �cf. Fig. 6�.

Figure 7 shows snapshots of prey spatial pattern at 0,
5000, and 45 000 iterations for the parameter S=1.2�SW.
Although the dynamics of the system starts from the same
initial condition as previous cases, there is an essential dif-
ference for the spatially extended model �Eq. �4��. From Fig.
7, one can see that the regular spotted patterns prevail over
the whole domain at last, and the dynamics of the system
does not undergo any further changes �cf. Ref. �49��.

On the other hand, discrete Fourier transform is a basic
mathematical tool used to decompose a signal or image into
different periodic components. It has been widely used for
the spatial patterns �41–43�. We have also performed numeri-
cal investigations into two-dimensional space by Fourier
spectra. The numerical computation of the Fourier transform
is done by the well-established two-dimensional fast Fourier
transform �FFT2� algorithm �44�. Spatial Fourier transform
of the stripelike and spotted patterns in Figs. 4�c�, 5, and 7�c�
are shown as Fig. 8. And digital images �cf., Figs. 3–9� are
obtained by using MATLAB �Ver. 7.0�.

From Fig. 8, we find that Fig. 4�c�� and Fig. 5 have the
same spatial frequency in the length of the space unit and
presence of one mode with different wavelengths. On the
contrary, Fig. 7�c�� has two modes with different wave-
lengths. The spatial frequency and direction of any compo-
nent in the power spectrum are given in the length and di-
rection, respectively, of a vector from the origin to the point
on the circle. The magnitude is depicted by a gray scale or
color scale, but the units are dimensionless values related to
the total darkness of the original images. In Fig. 8 �middle
column�, short wavelength, represented by a large circle, cor-
responds to Turing structures; longer wavelength, repre-
sented by a small white circle, corresponds to traveling
and/or standing waves. This technique can be particularly
appropriate for characterizing quasiordered arrays for Fig.
7�c��.

IV. DISCUSSION AND CONCLUSION

The numerical results correspond perfectly to our theoret-
ical findings that there are a range of parameters in S−D1

FIG. 9. �Color online� Snapshots of contour pictures of the time
evolution of the prey at different instants with the special initial
condition and S=0.6�ST. �A� 0 iteration; �B� 1000 iterations; �C�
45 000 iterations �49�.
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plane where the different spatial patterns emerge �cf. Fig. 1�.
Figure 1 and the results of simulations present that the chaos
patterns will persist in the spatially extended model �Eq. �4��
when the parameters are in the domain I. The boundary of
this domain can be computed numerically and is shown as
the blue line “Turing” in Fig. 1. The stationary state of stripe-
like patterns exists when the parameters are in the domain II,
where its boundary can also be computed numerically and is
shown as the black line “Hopf” in Fig. 1. The periodic spot-
ted patterns appear in domain VI, where the boundary can be
computed numerically by the wave bifurcation and is shown
as the red line by the label of the “wave” in Fig. 1. Moreover,
there is transverse domain IV �cf. Fig. 1� in the system be-
tween the stripelike patterns and spotted patterns, where the
spotted patterns and the stripelike patterns coexist �cf. Fig.
6�.

Do the stationary patterns arise dependent on the initial
conditions? We test the different initial conditions for the
spatially extended system, but the final spatial patterns are
the same in qualitative. In those figures we find that the
spatial chaos patterns come from the destruction of the spi-
rals, when we choose the special initial condition �cf. Fig. 9�
in domain I. This phenomenon coheres with the results of the
study in Refs. �16,45�.

We have presented a theoretical analysis of evolutionary
processes that involves organisms distribution and their in-
teraction of spatially distributed population with local diffu-
sion. Our analysis and numerical simulations reveal that the
typical dynamics of population density variation is the for-
mation of isolated groups �stripelike or spotted or coexist-
ence of both�. This process depends on several parameters,
including S, D1, and D2. The field meaning of our results
may be found in the dynamics of an aquatic community
which is affected by the existence of relatively stable meso-
scale inhomogeneity in the field of ecologically significant
factors such as water temperature, salinity, and biogen con-
centration.

In Ref. �16�, the authors explained the field meaning by
using aquatic community in the ocean �cf. Fig. 9�. They had
demonstrated phytoplankton and zooplankton spatiotemporal

chaos patterns that emerged as a result of the fish school
plankton interplay. It is apparent that the phytoplankton den-
sity is lower in the regions where zooplankton density is
higher, and vice versa. Many previous observers have re-
ported such an inverse relationship �46�. From the theoretical
study on the 3D patterns �47�, it is possible that the 3D
patterns can be reflected by the 2D patterns. So our 2D spa-
tial patterns may indicate the vital role of phase transience
regimes in the spatiotemporal organization of the phy-
toplankton and zooplankton in the aquatic ecosystems. Our
study shows that the spatially extended model �Eq. �4�� has
not only more complex dynamic patterns in the space, but
also chaos patterns and spiral waves, so it may help us better
understand the dynamics of an aquatic community in a real
marine environment. It is also important to distinguish be-
tween “intrinsic� patterns, i.e., patterns arising due to trophic
interaction such as those considered above, and “forced� pat-
terns induced by the inhomogeneity of the environment. The
physical nature of the environmental heterogeneity, and thus
the value of the dispersion of varying quantities and typical
times and lengths, can be essentially different in different
cases. Neuhauser and Pacala �48� formulated the Lotka-
Volterra model as a spatial model. They found the striking
result that the coexistence of patterns is actually harder to
obtain in the spatial model than in the nonspatial one. One
reason can be traced to how local interaction between indi-
vidual members of the species are represented in the model.
In this study, our results show that the ratio-dependent
predator-prey model �Eq. �4�� also represents rich spatial dy-
namics, such as chaos spiral patterns, stripelike patterns,
spotted patterns, coexistence of both stripelike and spotted
patterns, etc. It will be useful for studying the dynamic com-
plexity of ecosystems or physical systems.
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